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GENERAL THEORY OF HEAT AND MASS EXCHANGE

IN CHEMICALLY REACTIVE SYSTEMS IN MECHANICAL
EQUILIBRIUM WITH ELECTRIC FIELD WITHIN

THE FRAMEWORK OF THERMODYNAMICS OF IRREVERSIBLE
PROCESSES

A. S. Pleshanov UDC 530.161/,162

General analysis of the effects of chemical reactions on the processes of heat and mass transfer has
been the subject of many investigations (see literature cited in [1]). Such an analysis for mechanical equilib-
rium systems in symmetrical form was given in [2]. In the present article it is shown that a description of
chemical processes in the special meaning of the term can be carried out independently of heat and mass trans-
fer.

The processes which take place in a mechanical equilibrium (at rest) system consisting of k chemical
components K;(i, j =1, ..., k), among which r independent reactions Rg(s, t=1, ..., r) occur,aredescribed
by k continuity equations,

de,
P%Z ;+ diVIi = Emivisesa (1)
s

where, in addition to other notation, c¢; is mass fraction; Ij is diffusion flow; mj is molecular weight, g/ mole;
s is the rate of Rg, mole/cm?- sec; vig is stoichiometric coefficient of K; in Rg. Moreover, we have the
mechanical equilibrium condition

v p = pzE, )

where z is the free charge per unit of mass, as well as the energy equation which in usual notation is given
by

dpeldt + divq = (JE). 3)
The system (1)-(3) is supplemented by the Gibbs relation,
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de + pdV = Tds + 2\ pydc;, 4)

where p; is chemical potential per unit mass, and also by the condition that the electrical field is a potential
one,

E=—veo ‘ (5)
and, finally, by the Poisson equation,
div D = pz. ©)
In addition, the continuity condition of the electric current is given in its low-frequency approximation by
divj= 0. 7

From (1)-(4) there follows the equation for the entropy,
a. o1 1 1 As .
P‘a;— +div—- (q— E Mih) =(@qV) — Z.(IN)_T_ — E 0, -+ —;—(JE), ®)

where 4, = }] Vightifl; == ZwsMi is the chemical affinity. We shall find it convenient later to use the Planck func-
i i

tions pj=pi/ T and Ag=Ag/T. By introducing the electrochemical potential,
ui = R+ 5,

where z; is the charge of Kj per unit of mass, aswell as the generalized heat flux q*= q +j¢, we are able to
reduce (8) to a form with no explicit electrical term:

o +div (4= 2 uih) = @97 — S — Tt 9
Then '
a* — Zpili =q— Zpils
and by virtue of the conservation law of the electric charge for reactions of the form
; VisgMiZy = 21 v; Z; =10
one has A¥=Ag.

It can be shown that the modified Gibbs relation (4) under the assumption (2) of mechanical equilibrium
in a field of conservative forces such as in (5) is given by

dg* = — sdT + 3 pide;,

where g is the internal thermodynamic specific potential. The generalized Gibbs — Duhem relation is written
as

sdT + 3 cidp; = 0.
T
Finally, one also has the relation
h*v _%_ - >V C«;Vl::y

which enables one to rewrite (9) in the form [2]
.1 — -
p%+dlvT<q—2plll) = _Z(K1V)P1 _ZesAm (10)
where K} =1; — ciq*/h*, h¥* )

this being the generalized enthé.lpy.
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As regards Egs. (9) and (10), it should be noticed that they remain invariant with respect to the reference
levels of ¢ and h*, In particular, one can always define h* such that this quantity remains positive for any
T>0.

Equation (10) is identical with its corresponding equation in [2] in the case of the introduced generalized
pi and Kj. If, from now on, the asterisk * is omitted, one obtains for s the expression {2]

0= — X (K: V)wi — 30,4, ehY

the latter implying the general kinetic equations of the thermodynamics of irreversible processes,
0, = — §t] Ly Ay _ (12)
K; = *ZJ}MHV@ ‘ (13)

where Lgt = Ltg and Mjj= Mj; are kinetic coefficients. The lack of correlation between the scalar and the vec-
tor quantities in (12) and (13) is a consequence of the Curie principle. It appears that in this case there is also
an additional reduction of correlation in Egs. (13).

Let the system under consideration consist of ¢ different kinds of atoms- Ay ({, m =1, ...,a). By the
definition of independent reactions one has a =k —r. One now orders Kj in such a way that the first ¢ places

are occupied by A; and the remaining by the molecules K.ts =X 1y o4s A, Where n I, a+s is the number of A;
4

in Kg+g. I one regards the recombination reactions as independent, one can rewrite (1) as

dc :
p= -(—9—;— +divl; = — 2 ity s Og; (14)
$

bi .
o ngs 4 divEays — Mars,. (15)

The combination of (14) and (15) yields instead of (14) the equations
P 0
p ok +divI} =0, (16) .
where

N 7y g
0 1,a+s "1 .
€ =0 z amT Ca+ss
¢ ks anmn

M,a+s ™ I
a+ts-

I?ZIMLZ

a+s

Thus, the continuity equations (16) for any numbers of atoms in a system take the form of standard equations

with no chemical terms. By proceeding now to K‘Z’ in (11) similarly as in (17) one obtains

0=~ V)W — Sehere ), — 20,4, | as)

where ki =Ki/mj. The kinetic equations which follow from (18) are generally of the form of (12) and (13), that
is, in particular,

k? = EMlm \V2 Mm - lesV 25’
m s
~ _ (19)
ka+s = ;Msl v M — ;MS! vV A

The variables in (18) and (19) are now subjected to some linear transformations so that the expression
(18) and Eqs. (15) and (16) remain invariant. These transformations are of the form

Zs - EastAt’1
o s
8, = ; bye0t, Kyps == ; byikatts (20)

1\_,Il = chmm;na k? = Zdlmkoﬂ:!
m m
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where

Eas sbs p = 6513’ 2 cy ldl 'm — 6lma

and 6 st and 67, are Kronecker's symbols. Therefore, the unknown quantities in (20) are the r? values agt and
the @ ? values C/m* Substituting the expressions (20) in (18) and (19), one obtains

0= — S (V)M — X (kps V) A — S0
s s
kY = — M v Mo — M, v 45
m 8
k;+s m=—— gM;l \V M.; - ZtM;i V-Z;
where
s 2 Mimcriemm;
U,m*
M;, = 2 My 6m = ]\Alsl = 2 Mm@ sCmis
m, i m, i
M'st = g' M p@srsayy.

One can always select the values agt and cp,, in such a way that the ar conditions M'Zs =ML; = 0are
satisfied. Thus, one can be certain that there is no correlation in the kinetic equations (19) between the group
of chemical terms Ag, kg, +g and the group M, kg .

In the stationary one-dimensional case onefinds from (3), (5), and (7) that
j = counst, q* = q + jo = const,

and from (16) that I‘l’ =const; thus in the linear approximation kl =const and the transformed equations (15) are
of the form

dky & Jde = 2, (21)

By virtue of (12) and (19) the system of equations (21) is closed for the Planck functions Ks and can be written
as

s zMst 4, = 2 L 4. 22)

For Lgt, Mgt =const the solutions of (22) are of the form
2(C+ Agx + C;e——ht‘x ),
where the r values of A are found by solving the secular equation

il\lst}"2 - Lstl =0,

and out of 2r? integration constants Cg':t only 2r are independent and the remaining ones can be expressed in
their terms by using (22). Employing the obtained solutions one can express z in terms of ¢ and solve the last
equation of (6).

The actual choice of independent reactions is quite arbitrary, the nonvanishing of the cross coefficients
Lgt (s #t)is tobe understood as taking into account the possible dependent reactions which are not considered
explicitly within the framework of the thermodynamics of irreversible processes. :

Moreover, the employment of the Planck functions ﬁl and A_s as variables permits a natural extension
of the analysis just carried out to the case of anisothermic systems with different temperatures of different
Kj. :

The difference between this study and a similar investigation in [2] lies inthatin [2] the matrices || Lgt ||
and || Mjj|]] are diagonalized and one proceeds to formal variables whose meaning is not gquite clear whereas
in the present work the analysis is earried out in physical variables (in Planck functions Ml and AS) which
enables us to draw conclusions as regards the specific autonomy of chemical processes. In the general case
all kinetic coefficients depend on T and on concentrations: thus a complete separation of the original system of
equations is not possible.
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